Euler’s Theorem as the Path towards Geometry

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Euler’s Theorem as the Path towards Geometry

The roots of this article reside as much in curricular pragmatism as in programmatic, ideologic convictions. By curricular pragmatism we mean the anankian[1] drive for one single course in Mathematics for Architecture Students at the Technion – Israel Institute of Technology, course that would encapsulate as much formative knowledge as deemed feasible. The need for an “Object Oriented”, fast ap...

متن کامل

Geometry of the BFV Theorem

We describe gauge-fixing at the level of virtual paths in the path integral as a nonsymplectic BRST-type of flow on the path phase space. As a consequence a gauge-fixed, non-local symplectic structure arises. Restoring of locality is discussed. A pertinent anti-Lie-bracket and an infinite dimensional group of gauge fermions are introduced. Generalizations to Sp(2)-symmetric BLT-theories are mad...

متن کامل

The Rado Path Decomposition Theorem

Fix c : [N] → r, an r-coloring of the pairs of natural numbers. An ordered list of distinct integers, a0, a1, a2 . . . ai−1, ai, ai+1 . . . is a monochromatic path for color k, if, for all i ≥ 1, c({ai−1, ai}) = k. The empty list is considered a path of any color k. Similarly the list of one element, a0, is also considered a path of any color k. For any monochromatic path of length two or more ...

متن کامل

Legendrian Submanifold Path Geometry

In [Ch1], Chern gives a generalization of projective geometry by considering foliations on the Grassman bundle of p-planes Gr(p, R) → R by p-dimensional submanifolds that are integrals of the canonical contact differential system. The equivalence method yields an sl(n + 1, R)valued Cartan connection whose curvature captures the geometry of such foliation. In the flat case, the space of leaves o...

متن کامل

CONFORMAL GEOMETRY SEMINAR The Poincaré Uniformization Theorem

1.1. Geometry. A covariant derivative on a manifold M is an operator ∇XY on vector fields X and Y satisfying for any smooth function f : (i) ∇fXY = f∇XY ; and (ii) ∇X(fY ) = f∇XY + (∇Xf)Y . If g is a Riemannian metric on M , then there is associated with g a unique covariant derivative ∇ characterized by: (iii) ∇XY −∇YX = [X,Y ]; and (iv) ∇X ( g(Y,Z) ) = g(∇XY, Z) + g(Y,∇XZ). We define the Chri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nexus Network Journal

سال: 2005

ISSN: 1590-5896,1522-4600

DOI: 10.1007/s00004-005-0011-5